Genome‐scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi‐strain arrays

نویسندگان

  • Roland J. Siezen
  • Jumamurat R. Bayjanov
  • Giovanna E. Felis
  • Marijke R. van der Sijde
  • Marjo Starrenburg
  • Douwe Molenaar
  • Michiel Wels
  • Sacha A. F. T. van Hijum
  • Johan E. T. van Hylckama Vlieg
چکیده

Lactococcus lactis produces lactic acid and is widely used in the manufacturing of various fermented dairy products. However, the species is also frequently isolated from non-dairy niches, such as fermented plant material. Recently, these non-dairy strains have gained increasing interest, as they have been described to possess flavour-forming activities that are rarely found in dairy isolates and have diverse metabolic properties. We performed an extensive whole-genome diversity analysis on 39 L. lactis strains, isolated from dairy and plant sources. Comparative genome hybridization analysis with multi-strain microarrays was used to assess presence or absence of genes and gene clusters in these strains, relative to all L. lactis sequences in public databases, whereby chromosomal and plasmid-encoded genes were computationally analysed separately. Nearly 3900 chromosomal orthologous groups (chrOGs) were defined on basis of four sequenced chromosomes of L. lactis strains (IL1403, KF147, SK11, MG1363). Of these, 1268 chrOGs are present in at least 35 strains and represent the presently known core genome of L. lactis, and 72 chrOGs appear to be unique for L. lactis. Nearly 600 and 400 chrOGs were found to be specific for either the subspecies lactis or subspecies cremoris respectively. Strain variability was found in presence or absence of gene clusters related to growth on plant substrates, such as genes involved in the consumption of arabinose, xylan, α-galactosides and galacturonate. Further niche-specific differences were found in gene clusters for exopolysaccharides biosynthesis, stress response (iron transport, osmotolerance) and bacterial defence mechanisms (nisin biosynthesis). Strain variability of functions encoded on known plasmids included proteolysis, lactose fermentation, citrate uptake, metal ion resistance and exopolysaccharides biosynthesis. The present study supports the view of L. lactis as a species with a very flexible genome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-scale genotype-phenotype matching of two Lactococcus lactis plant isolates identifies adaptation mechanisms to the plant niche Running title: Genotype-phenotype matching of L. lactis plant isolates

Lactococcus lactis plant isolates identifies adaptation mechanisms to the plant niche Running title: Genotype-phenotype matching of L. lactis plant isolates ABSTRACT Lactococcus lactis is a primary constituent of many starter cultures used for the manufacturing of fermented dairy products, but the species also occurs in various non-dairy niches such as (fermented) plant material. Three genome s...

متن کامل

PanCGH: a genotype-calling algorithm for pangenome CGH data

MOTIVATION Pangenome arrays contain DNA oligomers targeting several sequenced reference genomes from the same species. In microbiology, these can be employed to investigate the often high genetic variability within a species by comparative genome hybridization (CGH). The biological interpretation of pangenome CGH data depends on the ability to compare strains at a functional level, particularly...

متن کامل

Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution.

Experimental evolution is a powerful approach to unravel how selective forces shape microbial genotypes and phenotypes. To this date, the available examples focus on the adaptation to conditions specific to the laboratory. The lactic acid bacterium Lactococcus lactis naturally occurs on plants and in dairy environments, and it is proposed that dairy strains originate from the plant niche. Here ...

متن کامل

Genome-scale genotype-phenotype matching of two Lactococcus lactis isolates from plants identifies mechanisms of adaptation to the plant niche.

Lactococcus lactis is a primary constituent of many starter cultures used for the manufacturing of fermented dairy products, but the species also occurs in various nondairy niches such as (fermented) plant material. Three genome sequences of L. lactis dairy strains (IL-1403, SK11, and MG1363) are publicly available. An extensive molecular and phenotypic diversity analysis was now performed on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011